
 1

A Structural Analysis Approach to the Evaluation of Fault Coverage for
Protocol Conformance Testing*

Mingyu Yao, Alexandre Petrenko** and Gregor v. Bochmann

Département d'informatique et de recherche opérationnelle
Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal (Québec), Canada H3C 3J7

Abstract

In this paper, we propose a structural analysis approach to the evaluation of fault coverage of
protocol conformance testing based on the finite state machine model. The attractiveness of this
approach is its low computational complexity. It allows us to calculate the fault coverage of a
given test suite by directly analyzing the test suite against the specification machine. Therefore,
it avoids the generation and execution of mutants. The approach has been implemented and a
number of experiments has been carried out. Some of the experimental results are summarized in
this paper to show the accuracy of this approach compared with the mutation analysis technique.

Keywords: I.3, I.6, III,1, IV.3, IV.4.

1 Introduction

The finite state machine (FSM) model has been widely used in the development of hardware and
software systems. Especially in the recent years, it has been extensively used in the conformance
testing of communication protocols. Quite a number of methods have been proposed in the
literature for generating test suites from protocol specifications given in the form of FSMs. An
important issue related to the test suite generation is the effectiveness of a test suite which
depends primarily on its fault coverage, i.e., its capability of detecting faults in a potential
implementation. Approaches based on Monte-Carlo simulation have been proposed in the
literature to evaluate the fault coverage of a test suite generated from a given FSM specification
[DaSa 88, DDB 91, SiLe 89 and MCS 93]. These approaches require a (large) number of
mutants of the given specification machine to be enumerated and executed against the test suite.
In our recent work [YPB 94], a different procedure has been developed which, without the need
of explicitly generating and then executing a certain (and often large) number of mutant
machines, can decide if the given test suite provides full fault coverage (i.e., if it can detect all
bad implementation machines). However, this approach does not provide a numeric measure for
a test suite which does not have full fault coverage. Consequently, it is impossible to use this
approach to compare the fault coverage of two test suites, if none of them provides full fault
coverage. In this paper, we will propose a structural analysis approach to evaluate the fault
coverage of a given test suite. The basic idea of this approach is, by analyzing the given test
suite against the specification machine, to make an estimation on the number of mutants

* This research was supported by the IDACOM-NSERC-CWARC Industrial Research Chair on Communication
 Protocols at University of Montreal.
** On leave from the Institute of Electronics and Computer Science, Riga, Latvia.

 2

representing potential bad implementations that can be detected by the test suite without the
need to generate and execute the mutants.

The rest of the paper is organized as follows. In Section 2, the FSM model is introduced and a
framework of software testing based on this model is presented. The structural analysis approach
to the evaluation of fault coverage of a test suite is developed in Section 3. The "Order
Coverage", which is based on the structural analysis approach and proposed to deal with large
complex specification machines, is then presented in Section 4. Finally, in Section 5, our
approach is compared with other related work.

2 A Framework of Testing Based on the FSM Model

We will first introduce the finite state machine model and then present a software testing
framework based on this model.

2.1 The FSM Model

A finite state machine (FSM), often simply called a machine throughout this paper, is essentially
an initialized Mealy machine which can be formally defined as follows.

Definition 2.1 (finite state machine)
A finite state machine is a 7-tuple <S, X, Y, S1, , D>, where
S is a set of n states {S1, S2, ..., Sn} with S1 as the initial state;
X is a finite set of input symbols;
Y is a finite set of output symbols;
D is a specification domain which is a subset of S x X;
 is a transfer function : D --> S;
 is an output function : D --> Y.

An FSM is said to be completely specified (defined), iff D = S x X. Otherwise it is said to be
partially or incompletely specified (defined). Since and are required to be functions, this
FSM model is deterministic. That is, for each (Si, x) [D, there should be exactly one state Sj [S
and exactly one output symbol y [Y such that (Si, x) = Sj and (Si, x) = y. In this case, we say
there is a transition leading from state Si to Sj with input x and output y. Such a transition is
usually written as Si -x/y-> Sj, or as a triplet < Si; x/y; Sj >. Si is said to be the head or starting
state of the transition, while Sj is said to be the tail or ending state of the transition. An FSM can
be given in a graph form, with the states and transitions of the FSM represented by the vertices
and arcs of the graph, respectively. As an example, Figure 1 gives a FSM which is partially
specified since, at state S3, no transition is specified for input symbol 1.

 3

S1 S2

S4 S3

1/1

2/2
2/2

1/1

2/2
1/2

2/2

S = { S1, S2, S3, S4 }
X = { 1, 2 }
Y = { 1, 2 }
Initial state is S1

Figure 1: An example FSM

The following notations will be used throughout the paper. For a given symbol set Z, Z* is used
to represent the set of words constructed on Z and "" to represent the empty word, i.e., the word

consisting of no symbols. Also, the dot "." is used to represent the concatenation operation of
two words. However, this dot symbol is often omitted when no ambiguity arises. Furthermore,
|Z| is used to represent the cardinality of Z.

Definition 2.2 (defined input sequence)
Let p = x1x2...xk [X*. p is called a defined input sequence for state Si [S, if there exist k states

Si1, Si2, ..., Sik [S and an output sequence q = y1y2...yk [Y* such that there is a sequence of
transitions
Si -x1/y1-> Si1 -x2/y2-> Si2 --> ... --> Sik-1 -xk/yk->Sik (2-1)
in the finite state machine.

We use (Si) to denote the set of all the defined input sequences for state Si. A sequence of

transitions such as (2-1) can be abbreviated as Si -p/q-> Sik, which, when we do not care about

the output sequence q, can be further simplified as Si -p-> Sik, with the meaning that the FSM,
when in state Si and given an input sequence p, will enter state Sik. The definitions of the transfer
function and output function can be naturally extended to apply not only to single inputs, but
also to sequences of inputs.

Definition 2.3 (extensions of transfer and output functions to input sequences)

Let p = x1x2...xk [(Si) and be the empty word. Then,

(Si,) = Si (Si, p) = ((Si, p’), xk)

(Si,) = (Si, p) = (Si, p’).((Si, p’), xk)

where p’ = x1x2...xk-1.

Definition 2.4 (compatible states and distinct states)

We say that Si and Sj are compatible states if for : p [Si) (Sj), s(Si, p) = s(Sj, p).
Otherwise, they are called distinct states.

 4

According to the above definition, if Si) (Sj) = , then Si is compatible with Sj. If the
FSM happens to be completely specified, then the definition of compatible states given above
reduces to the definition of equivalent states as found in the literature (see for example, [Gill 62,
Koha 78]).

Definition 2.5 (reduced machine)
A FSM is said to be reduced if and only if no two states are compatible.

It is easy to verify that the FSM given in Figure 1 is reduced.

Definition 2.6 (reachable state and strongly connected FSM)
A state Si is said to be reachable (from the initial state S1) if there exists an input sequence p [
Si) such that S1 -p->Si. A machine is said to be initially connected if all the states are
reachable.

Apparently, all the states of the FSM in Figure 1 can be reached from the initial state and
therefore this example FSM is initially connected.

Definition 2.7 (mutant machine)
Let M1 and M2 be two given FSMs. M2 is said to be a mutant machine of M1 if M2 is obtained
by applying to M1 each of the following four types of operations, in any order, for a certain
number of times (including zero times):
Type 1: change the tail state of a transition;
Type 2: change the output of a transition;
Type 3: add a transition; and
Type 4: add an extra state.

The following corollary follows directly from the above definition.

Corollary 2.8
A machine is a mutant machine of itself.

2.2 A Testing Framework Based on FSM Model

The FSM model was widely used in traditional hardware testing. In recent years, this model has
also received much attention in the testing of certain software systems such as communication
protocols [PBD 93] and object-oriented programs [HoSt 93, TuRo 92]. Testing based on the
FSM model can be formalized as the problem of testing a FSM implementation[Ural 91]: given a
FSM representation (specification) of a system (denoted henceforth as MS) and an
implementation of the system (denoted henceforth as MI), we are required to determine if the
implementation machine MI conforms to (i.e., is correct with respect to) the specification
machine MS by testing MI as a black-box. This implies that we should generate from MS a set of
input sequences, called a test suite, and the corresponding set of expected output sequences such
that MI conforms to MS if and only if, when the input sequences in the test suite are applied to
MI, the observed output sequences from MI are the same as the corresponding expected output
sequences. As already pointed out in the literature [Moor 56, Gill 62, YPB 93a, YPB 93b], this
problem is not solvable unless it is dealt within a restricted framework. Therefore, some
assumptions should be made about the specification machine MS and the implementation

 5

machine MI. Firstly, the restrictions on the specification machine are summarized in the first
assumption.

Assumption 1: (reduced and initially connected specification machine)
The given specification machine MS is reduced and initially connected.

Secondly, testing based on the FSM model is essentially a mutation testing. Therefore, for the
given specification machine MS, an implementation machine MI is actually a mutant machine (of
MS) obtained from MS by applying each of the four types of operations listed in Definition 2.7
for a number of times (including zero times). These four types of operations represent the basic
types of changes that can be made during the implementation of MS. However, it should be
noted that, in practice, the implementation machine MI is normally completely defined even
though the given specification machine MS is often only partially specified. Therefore, the
following assumption is made throughout this paper.

Assumption 2: (completeness of an implementation machine)
For the given specification machine MS, an implementation machine MI is a completely defined
mutant machine of MS.

Thirdly, if the number of changes of Type 4 applied to the given specification machine MS is not
limited, the number of mutants of MS will be infinite and the problem of testing will become
intractable. Therefore, in practice, the number of changes of Type 4 is always limited to an upper
bound. Throughout this paper, we simply do not allow any change of Type 4 as stated in the next
assumption.

Assumption 3: (limited number of states in an implementation machine)
For the given specification machine MS, any operation of Type 4 is not allowed and therefore the
number of states in an implementation machine MI will not exceed that of MS.

We also note here that additional types of changes, such as changes of inputs, changes of head
states and missing states, may be introduced [MiPa 92]. However, these types of changes are not
necessary for our discussion as the FSM model is deterministic (Definition 2.1) and
implementation machines are assumed to be completely defined (Assumption 2). The following
example explains that the same consequences of a missing state can be achieved by changing the
tail states of certain transitions (Type 1). Figure 2 (a) shows that, when implementing the FSM
given in Figure 1, state S4 is not implemented (i.e., missing in the implementation) and the
transition < S3; 2/2; S4 > is changed to < S3; 2/2; S1 >. However, we can still think that state S4
is present in the implementation as shown in Figure 2 (b). The reason is that S4 is no longer
reachable and therefore, during the black-box testing, whether S4 is present or missing in the
implementation makes no difference.

 6

S1 S2

S4 S3

1/1

2/2

2/2

1/1

2/2

1/2

2/2

S1 S2

S3

1/1

2/2
2/2

1/1

2/2

(a) (b)

1/2 1/2

Figure 2: missing state

Therefore, as a matter of fact, all the n states S1, S2, ..., Sn of the specification machine MS are
assumed to be present in an implementation machine MI. However, some of these states may
become unreachable in MI due to the changes of Type 1 introduced during the implementation.
Confusion may arise because the same state names S1, S2, ..., Sn are used for both MS and MI. It
is therefore often helpful, although not necessary, to make things clear by renaming the states S1,
S2, ..., Sn in MI to I1, I2, ..., In, respectively. Then without loosing generality, let

MS = < {S1, S2, ..., Sn}, X, Y, S1, SS, DS >, and

MI = < {I1, I2, ..., In}, X, Y, I1, II, DI >.

Since MI is supposed to be completely defined, we know that DI = {I1, I2, ..., In} x X and

therefore Ii) = X* and Sj) { Ii), for any Ii and Sj. Now, we need to introduce some
important concepts. The first concept required is the so-called conformance relation which
essentially defines when MI is a correct implementation of MS. This concept is defined through
the following two definitions.

Definition 2.9 (equivalence of states in respect to a set of input sequences)

Let Ii be a state of MI and Sj a state of MS. V is a set of input sequences such that V { Sj).
Then
Ii –V Sj if I (Ii, p) = S(Sj, p), for : p [V.

Definition 2.10 (conformance relation)
MI conforms to MS, written MI CONF MS, if and only if I1 –(S1) S1, where I1 and S1 are the
initial states of MI and MS, respectively.

The above defined conformance relation corresponds to the notion of weak conformance [SaDa
88, SiLe 89 and MiPa 92]. The relationship between the above defined conformance relation and
the types of operations listed in Definition 2.7 is established by the following lemma of which
the proof is similar to that of Lemma A.1 given in the appendix of [YPB 93a].

Lemma 2.11

 7

For the specification machine MS and implementation. Then MI conforms to MS if and only if

there exists a mapping f: {S1, S2, ..., Sn} -> {I1, I2, ..., In}, such that
(1) f is one-to-one; and
(2) If Si - x/y -> Sj is in MS, then Ik - x/y -> I¬ is in MI, where Ik = f(Si) and I¬ = f(Sj).

Since the implementation machine MI is treated as a black-box, test cases should be generated
from the specification machine MS. The following two definitions formally defines the concepts
of test case and test suite.

Definition 2.12 (test case)

A test case is a sequence of inputs which should be of finite length and in S1).
As is clear from the above definition, a test case always starts from the initial state S1 of the
specification machine MS. Accordingly, each test case should be applied to the implementation
machine MI when it is in its initial state I1. Therefore, an important assumption in the testing
based on the FSM model is about the availability of the so-called reliable reset function and is
summarized as our fourth (and final) assumption.

Assumption 4: (availability of reliable reset)
The reliable reset is an operation that, when activated, will bring the implementation from any
other state back into its initial state. It is assumed to be available in an implementation under
test.

A special input symbol “r” representing the invocation of the reset operation is added to the
beginning of each test case.

Definition 2.13 (test suite)
A test suite is a finite set of test cases.

TS = { r.1.1.2, r.2.1.2.1, r.2.2.1 }

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S2 S3

S4

1/1 1/1 2/2

2/2 1/1 2/2 1/2

2/2 2/2 1/1

V1 V2 V3 V4

V5 V6 V7 V8 V9

V10 V11 V12 V13

(b)

(a)

 8

Figure 3: A test suite generated from the example FSM

Figure 3 (a) lists the test cases of a test suite generated from the machine shown in Figure 1.
Each of the test cases is prefixed by the reset symbol “r”. Applying the three test cases to the
initial state S1 results in the three sequences of transitions shown in Figure 3 (b) that will be
executed.

Definition 2.14 (to pass a test suite)
Let TS be a test suite and p [TS be a test case. We say that a given implementation MI passes
the test case p, written MI pass p, iff I (I1, p) = S(S1, p). Further, we say that MI passes the test
suite TS, written MI pass TS, iff MI pass p, for : p [TS.

An implementation machine which cannot pass a given test suite is said to fail the test suite or to
be detected by the test suite.

Let Impl(MS) represent the set of all the implementation machines of MS, i.e., all the completely
defined mutant machines with same number of states as MS. Then the following lemma follows
directly from the above definitions.

Lemma 2.15
Let TS be a given test suite for MS and MI [Impl(MS). MI does not pass TS implies that MI
does not conform to MS.

3 A Structural Analysis Approach to Evaluating Fault Coverage

In this section, we are going to present a structural analysis approach to the evaluation of fault
coverage of a test suite in respect to a given specification machine. This approach avoids the
necessity of explicit generation and execution of mutant machines representing possible
implementations of the given specification machine MS. First of all, let us introduce the
following notations:

N1(MS) - the total number of machines in Impl(MS);
N2(MS) - the number of machines in Impl(MS) which conform to MS;
N3(MS) - the number of machines in Impl(MS) which do not conform to MS;
N4(MS, TS) - the number of machines in Impl(MS) which can pass the given test suite TS;
N5(MS, TS) - the number of machines in Impl(MS) which do not conform to MS and cannot
 pass the given test suite TS;

We have the following lemma whose validity is obvious (see [Gill 62, SiLe 89]).

Lemma 3.1
The total number of implementation machines, that is the cardinality of Impl(MS), is

N1(MS) = Impl(MS) = (n Y)n X
 (3-1)

 9

Among these implementation machines, there are
N 2(MS) = (n - 1)! (n Y)n X - DS (3-2)
implementation machines which conform to MS, where n, X, Y and DS are the number of states,
the input set, the output set and the specification domain of MS, respectively.

It is also easy to see that N3(MS) = N1(MS) - N2(MS) and N5(MS, TS) = N1(MS) - N4(MS, TS).
Therefore, we can give the following so-called precise fault coverage of a given test suite TS in
respect to a given specification machine MS.

Definition 3.2 (precise fault coverage)
The precise fault coverage of a test suite TS in respect to MS, denoted as FCp(MS, TS), is

FCp(MS, TS) =
N5(MS, TS)

N 3(MS)
 =

N 1(MS) - N 4(MS, TS)
N 1(MS) - N 2(MS, TS)

As is clear from the above definition, in order to calculate the fault coverage, we still need to
find N4(MS, TS), the number of machines in Impl(MS) which can pass the given test suite TS.
The exact value of N4(MS, TS) is in general too difficult to find without using the exhaustive
mutation analysis technique. However, as we have already mentioned, the exhaustive analysis
technique is often not feasible in practice due to the high cost. Therefore, in our approach, we
will use an estimated value, denoted as N4(MS, TS), of N4(MS, TS). Substituting N4(MS, TS) for
N4(MS, TS) in the calculation of the fault coverage as defined in Definition 3.2 results in the
following estimated fault coverage.

Definition 3.3 (estimated fault coverage)
The estimated fault coverage of a test suite TS in respect to MS, denoted as FCe(MS, TS), is

FCe(MS, TS) =
N 1(MS) - N4(MS, TS)
N 1(MS) - N2(MS, TS)

Definition 3.4 (prefix set of a test suite)
The prefix set AP(TS) of a test suite TS is the set which consists of all the prefixes of all the test
cases in TS, i.e.,
AP(TS) = { p | p is a prefix of some test case in TS }.

Definition 3.5 (transition covered by TS)
A transition < Si; x/y; Sj > in MS is said to be covered by TS, if there are , x [AP(TS) such
that S(S1,) = Si andS(S1, x) = Sj.

Definition 3.6 (tail state Sj of a transition distinguished from Sk by TS)
The tail state Sj of a transition < Si; x/y; Sj > in MS is said to be distinguished from another state

Sk by TS if there are x x[AP(TS) such that
S(S1,) = Si,S(S1, x) = Sj, S(S1,) = Sk and S(S(S1, x),) � S(S(S1,),).

We will proceed in two steps to find the value of N4(MS, TS). In the first step, we will make an
estimation, denoted as N6(MS, TS), on the number of implementation machines which can pass
the given test suite TS, by analyzing the structures of the given specification machine and test
suite. In the second step, N6(MS, TS) will be adjusted to N4(MS, TS).

 10

To find the value of N6(MS, TS), we need to classify the transitions of MS into two classes: the
first class includes the transitions covered by TS, while the second class consists of the
transitions not covered by TS. Taking the specification machine given in Figure 1 and the test
suite TS shown in Figure 3 (a) as an example, we can easily check that, among the seven
specified transitions in Figure 1, the six transitions listed in Table 1 (a) are covered by the test
suite TS, while the other transition given in Table 1 (b) is not covered.

For a transition < Si; x/y; Sj > in MS, we use Tail_Dis(< Si; x/y; Sj >, TS) to denote the set of
states from which the tail state Sj of transition < Si; x/y; Sj > is distinguished. Then,
Tail_NDis(< Si; x/y; Sj >, TS) = { S1, S2, ..., Sn } - Tail_Dis(< Si; x/y; Sj >, TS)
is the set of states from which the tail state Sj of transition < Si; x/y; Sj > is not distinguished.

For a transition < Si; x/y; Sj > covered by TS, we can easily calculate Tail_Dis(< Si; x/y; Sj >,
TS) and therefore Tail_NDis(< Si; x/y; Sj >, TS). As an example, let us consider one of the
covered transition < S1; 2/2; S2 > given in Table 1 (a). As is clear from Figure 3 (b), this
transition is covered twice by the test suite. The tail state S2 at point V6 is distinguished from
state S4 at point V8. The same tail state S2 at point V11 is distinguished from state S3 at point V7.
Therefore, Tail_Dis(< S1; 2/2; S2 >, TS) = { S3, S4 } and Tail_NDis (< S1; 2/2; S2 >, TS) = {
S1, S2 }.

 11

(a) transitions covered by TS

< S1; 1/1; S2 > < S1; 2/2; S2 > < S2; 1/1; S3 >

< S2; 2/2; S2 > < S3; 2/2; S4 > < S4; 1/2; S4 >

(b) transition not covered by TS

< S4; 2/2; S1 >

Tail_Dis (< S1; 1/1; S2 >, TS) = { S4 }
Tail_Dis (< S1; 2/2; S2 >, TS) = { S3, S4 }
Tail_Dis (< S2; 1/1; S3 >, TS) = { S1, S2 }
Tail_Dis (< S2; 2/2; S2 >, TS) = { S4 }
Tail_Dis (< S3; 2/2; S4 >, TS) = { S1, S2 }

Tail_Dis (< S4; 1/2; S4 >, TS) =

(c)

Tail_NDis (< S1; 1/1; S2 >, TS) = { S1, S2, S3 }
Tail_NDis (< S1; 2/2; S2 >, TS) = { S1, S2 }
Tail_NDis (< S2; 1/1; S3 >, TS) = { S3, S4 }
Tail_NDis (< S2; 2/2; S2 >, TS) = { S1, S2, S3 }
Tail_NDis (< S3; 2/2; S4 >, TS) = { S3, S4 }
Tail_NDis (< S4; 1/2; S4 >, TS) = { S1, S2, S3, S4 }

(d)

Table 1: Intermediate calculation results for the example FSM and TS

The related results for the other five covered transitions can be found in Table 1 (c) and (d).
Since a state in Tail_NDis(<Si; x/y; Sj>, TS) is not distinguished from the tail state Sj of <Si;
x/y; Sj>, changing the tail state Sj of transition < Si; x/y; Sj > to any state in Tail_NDis(< Si; x/y;
Sj >, TS) will give us an implementation machine which can pass the test suite TS. Therefore,
there are |Tail_NDis(< Si; x/y; Sj >, TS)| possible ways to make such a Type 1 change (as
defined in Definition 2.7). However, we should note that, as transition < Si; x/y; Sj > is covered
by TS, changing the output symbol “y” to any other output symbol (Type 2 change) will result in
an implementation machine which is very likely to be detected by TS. Therefore, to guarantee to
generate an implementation machine which can pass TS, we have only one choice of keeping the
output “y” of the transition. Consequently, the given transition < Si; x/y; Sj > covered by TS
gives us |Tail_NDis(< Si; x/y; Sj >, TS)| possible ways of generating an implementation machine
which can pass the test suite TS. It can be noted that, with certain test suite generation methods
such as the W method [Chow 78], all the transitions in the specification machine will be covered

 12

and the tail state of each transition will be distinguished from all other states. Therefore,
Tail_NDis(< Si; x/y; Sj >, TS) = { Sj } and |Tail_NDis(< Si; x/y; Sj >, TS)| = 1.

For a transition < Si; x/y; Sj > not covered by the given test suite TS, its tail state Sj is not
distinguished by TS from any state. Therefore, we have Tail_NDis(< Si; x/y; Sj >, TS) = { S1,
S2, ..., Sn }. Furthermore, since the transition is not covered by TS, we can change the output
symbol “y” to any symbol in Y and still get a mutant machine which can pass TS. Combining
the possible ways of changing the tail state (Type 1 change) and the possible ways of changing
the output (Type 2 change), we can immediately conclude that, for the transition < Si; x/y; Sj >
which is not covered by TS, there are |Tail_NDis(< Si; x/y; Sj >, TS)| x |Y| = n|Y| possible ways
to generate an implementation machine which can pass the test suite. As a result, the set of all
the transitions not covered by TS gives us (n. Y)m choices to generate an implementation
machine which can pass TS (where m is the number of transitions not covered by TS).

As we have assumed in Section 2, an implementation machine should be completely defined.
Therefore, for the given specification machine MS which is in general partially specified, we

need to apply the Type 3 operation to add an extra transition for each (Si, x) [S x X - DS. Since
the tail state of such an extra transition can be any of the n states S1, S2, ..., Sn and the output

symbol can be any one in Y, we know that there are a total of (n. Y)n X - DS possible ways to
generate an implementation machine by adding n|X| - |DS| extra transitions.

Following from the above discussions, we have

N6(MS, TS) = (nY)n X - DS + m Tail_NDis (< Si; x/y; Sj >, TS)
< Si; x/y; Sj >

covered

 (3-3)

implementation machines in Impl(MS) which are estimated to be able to pass the given test
suite, where m is the number of transitions not covered by TS.

However, we should note that, among all the implementation machines in Impl(MS), there are

N 2(MS) = (n - 1)! (n Y)n X - DS
implementation machines which conform to the given specification machine MS and therefore
can pass any test suite. As such, we need to adjust the estimated number of implementation
machines that can pass the test suite TS and use N4(MS, TS) = max(N2(MS), N6(MS, TS)) (i.e.,
the maximum of the two)

FCe(MS, TS) =
N 1(MS) - max(N 2(MS, TS), N6(MS, TS))

N 1(MS) - N2(MS, TS)
 (3-4)

Let us continue our example with the specification machine given in Figure 1 and the test suite
shown in Table 1 (a). For this particular example, |DS| = 7, m = 1, n = 4, |X| = |Y| = 2. Therefore,
we have N1(MS) = 16777216, N2(MS) = 48, N6(MS, TS) = 18432 and finally the estimated fault
coverage FCe(MS, TS) = 99.89042%.

Several properties of FCe(MS, TS) given in (3-6) are summarized in the following theorem.

 13

Theorem 3.7
(1) 0 ≤ FCe(MS, TS) ≤ 1;
(2) FCe(MS, TS) = 1 if FCp(MS, TS) = 1;
(3) FCe(MS, TS) = 0 if FCp(MS, TS) = 0; and
(4) FCe(MS, TS) ≤ FCe(MS, TS’) if AP(TS) { AP(TS’).

It is quite straightforward to prove these properties. However, we feel that the meaning of the
forth property needs some explanation. We note that AP(TS) is the prefix set of TS and that
AP(TS) { AP(TS’) implies that TS’ has more or longer test cases than TS. The forth property
essentially tells us that the estimated fault coverage for TS and TS’ coincide with the intuition
that TS’ provides better fault coverage than TS.

The calculation of the estimated fault coverage given in (3-4) can be simplified since a common
factor (n |Y|)n|X| - |DS| exists in N1(MS), N2(MS) and N6(MS, TS) as shown in (3-1), (3-2) and
(3-3), respectively. After eliminating this common factor from all the items in (3-4), we have the
following simplified formula:

FCe(MS, TS) =
K1(MS) - max(K2(MS, TS), K3(MS, TS))

K1(MS) - K2(MS, TS) , (3-5)

where
K1(MS) = (n Y) DS,
K2(MS, TS) = (n - 1)! ,

K3(MS, TS) = (nY)m Tail_NDis (< Si; x/y; Sj >, TS)
< Si; x/y; Sj >

covered

 .

From this simplified formula, we can see that only the specified transitions in a given
specification machine will contribute to the calculation of the estimated fault coverage and those
non specified can be excluded from consideration.

The above structural analysis approach to the evaluation of fault coverage has been implemented
under SUN/UNIX and a number of experiments have been done to show how accurately the
estimated fault coverage can match the precise fault coverage. Taking the FSM given in Figure 1
as a specification machine, we generated the following nine test suites:

TS1 =
TS2 = { r.1 }
TS3 = { r.1.1.2, r.2.1.2.1 }
TS4 = { r.1.1.2, r.2.1.2.1, r.2.2.1 }
TS5 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2 }
TS6 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2 }
TS7 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2.2 }
TS8 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2.2 }
TS9 = { r.1.1.2.1.1.1, r.1.1.2.1.2.1, r.1.2.1.2.1, r.1.1.2.2.1.1.2.1, r.1.1.2.2.1.2.1,
 r.1.1.2.2.2.1, r.1.2.2.1, r.2.1.2.1.1, r.2.2.1.2.2 }

 14

Applying our structural analysis approach to these test suites yields the estimated fault coverage
listed in the second column of Table 2. To assess the accuracy of these estimated fault coverage
values, we need to compare them with the precise fault coverage values for these test suites.
Fortunately, for the small specification machine given in Figure 1, we have been able to make an
exhaustive mutation analysis. We have written a program which generates and executes one by
one all the (4 x 2)(4 x 2) = 16777216 possible implementation machines against each of the above
nine test suites. Therefore, we have been able to calculate the precise fault coverage for these
test suites and the results are listed in the third column of Table 2. The differences between the
estimated and precise fault coverage are listed in the forth column of Table 2.

TSi FCe(MS, TSi) FCp(MS, TSi) Deviation

TS1

TS2

TS3

TS4

TS5

TS6

TS7

TS8

TS9

0.00000%

50.00014%

99.34110%

99.89042%

99.94535%

99.94535%

99.97282%

99.89042%

100.00000% 100.00000%

0.00000%

50.00014%

99.25871%

99.66497%

99.66898%

99.88084%

99.77655%

99.92032%

0.00000%

0.00000%

0.08239%

0.22545%

0.22144%

0.06451%

0.16880%

0.05250%

0.00000%

Table 2: Fault Coverage for the FSM in Figure 1

We have also applied this structural analysis approach to some real protocol machines. For
instance, the FSM shown in Figure 4 actually represents the control portion of the NBS transport
protocol (class 4) [SiLe 89]. It has 15 states, 27 inputs, 46 outputs and 62 specified transitions.
For this FSM, the following two test suites are generated in [SiLe 89] with the transition tour
method and the UIO method, respectively.

TST = { r.x1.x14.x5.x5.x19.x24.x12.x3.x8.x9.x8.x11.x16.x8.x7.x11.x24.x2.x17.x1.x15.x5.
 x24.x13.x19.x1.x14.x8.x10.x11.x16.x8.x7.x8.x9.x24.x12.x5.x24.x17.x19.x13.x18.
 x21.x23.x24.x1.x15.x6.x24.x12.x22.x4.x19.x24.x17.x2.x27.x1.x14.x23.x24.x12.x3.
 x9.x16.x11.x7.x24.x17.x1.x15.x23.x24.x1.x14.x25.x26.x16.x5.x24.x1.x15.x20.x6.
 x24.x13.x18.x3.x16.x9.x8.x7.x24.x12.x3.x16.x10.x11.x7.x10.x11.x9.x24.x1.x14.
 x16.x8.x9.x11.x7.x24.x1.x14.x16.x23.x24.x1.x14.x16.x.25.x26 }

TSUIO = { r.x1.x14.x5.x5, r.x1.x14.x8.x9, r.x1.x14.x23.x5, r.x1.x14.x25.x8,
 r.x1.x14.x26.x8, r.x1.x14.x16.x5.x5, r.x1.x14.x16.x8.x7, r.x1.x14.x16.x23.x5,
 r.x1.x14.x16.x25.x8, r.x1.x14.x16.x26.x8, r.x1.x15.x5, r.x12.x3.x8.x9,

 15

 r.x12.x3.x9.x8.x16.x7, r.x12.x3.x9.x11.x16.x7, r.x12.x3.x9.x16.x8.x7,
 r.x12.x3.x9.x16.x7.x5, r.x12.x3.x9.x16.x11.x7, r.x12.x3.x10.x9,
 r.x12.x3.x11.x9, r.x12.x3.x16.x8.x7, r.x12.x3.x16.x7.x8.x9,
 r.x12.x3.x16.x7.x9.x5, r.x12.x3.x16.x7.x10.x9, r.x12.x3.x16.x7.x11.x9
 r.x12.x3.x16.x9.x8.x7, r.x12.x3.x16.x9.x7.x5, r.x12.x3.x16.x9.x11.x7
 r.x12.x3.x16.x10.x7, r.x12.x3.x16.x11.x7, r.x12.x5.x5.x5, r.x12.x5.x19.x5
 r.x12.x5.x24.x12, r.x12.x5.x11.x5, r.x12.x21.x3, r.x12.x23.x5, r.x12.x22.x3
 r.x12.x4.x5.x5, r.x12.x4.x6.x5, r.x12.x4.x19.x5, r.x12.x4.x23.x5
 r.x12.x4.x20.x5, r.x2.x12, r.x17.x1.x14, r.x17.x19.x12, r.x17.x2.x27
 r.x17.x27.x12, r.x13.x19.x12, r.x13.x18.x3 }

For both these two test suites, our structural analysis approach yields the estimated fault
coverage to be 100%. For such a large machine, we are apparently unable to use the exhaustive
mutation analysis technique to simulate all the 690405 possible implementation machines.
Therefore, we

 16

x25/y37
x26/y16

x5
/y

33

x2
3/

y3
2

x5/y39
x11/y40
x19/y29

S1

S2

S3

S7

S4

S5

S6

S15 S8

S9

S10S14

S12 S11

S13S7

x2/y3

x13/y7

x19/y29

x12/y30

x1
/y

10

x17/y31
x18/y30

x21/y30
x22/y16

x23/y32x5/y33

x4/y34

x3/y35
x19/y29

x27/y8

x2/y3

x1/y10

x15/y36

x14/y37

x20/y36

x5/y38
x6/y38
x19/y38
x23/y14

x24/y8

x8/y29x25/y37
x26/y16

x1
6/y

6
x16/y6 x8/y41

x10/y41
x11/y41x9/y42

x16/y6

x8/y41
x11/y43

x8/y41
x11/y43

x8/y41
x11/y43

x8/y41
x10/y41
x11/y43

x8/y41
x10/y41
x11/y43

x7/y41
x9

/y
43

x8/y44
x23/y32

x5/y33

x7/y38

x7
/y

45 x9/y46

Figure 4: The NBS Transport Protocol (Class 4)

 17

cannot compare our estimated fault coverage values with the corresponding precise fault
coverage values here. However, we have also used the Monte-Carlo simulation approach to
estimate the fault coverage for these two test suites. 106 randomly generated mutants, each of
which does not conform to the specification machine given in Figure 4 and contains a random
number of transfer and/or output faults, have been simulated. It turns out that both test suites can
detect all these 106 non conforming mutants. Therefore, with the Monte-Carlo simulation
approach, we have found that the fault coverage of these two test suites to be also 100%. This
coincides with the result obtained with our structural analysis approach. It should be noted that
our Monte-Carlo simulation differs from the one used in [SiLe 89] where 10 classes of mutants
were defined and only mutants within those classes were simulated.

1.0

1.00.0

FCe(TS, M)

FCp(TS, M)

 K1*(|Y| - 1)
(K1 - K2)*|Y|

Ideal

Real

a

a
b

c

 K1*(|Y| - 1)
(K1 - K2)*|Y|

Figure 5: FCe(MS, TS) vs. FCp(MS, TS) for a given MS

As is clear from the above two examples, the estimated fault coverage approaches the precise
fault coverage when the latter is either very high (almost 100%) or relatively low. The general
relationship between the estimated fault coverage and the precise fault coverage is shown in
Figure 5. We have already pointed out in Theorem 3.7 that the estimated fault coverage FCe(MS,
TS) takes the same value as the precise fault coverage FCp(MS, TS) whenever the latter is equal
to 0 or 1. It is also shown in Figure 5 that, for a test suite TS which has only one input symbol
(excluding the reset), both the estimated fault coverage FCe(MS, TS) and the precise fault
coverage FCp(MS, TS) will be equal to (K1*(|Y| - 1))/((K1 - K2)*|Y|). For a test suite TS which
has more than one input, the precise fault coverage FCp(MS, TS) will take a value "a", where
(K1*(|Y| - 1))/((K1 - K2)*|Y|) a 1. Ideally, we would like the estimated fault coverage

 18

FCe(MS, TS) to take the same value "a". In reality, FCe(MS, TS) approximates FCp(MS, TS) by
taking a value in the section [c, b], where c a b.

4 Fault Coverage at the Order Level

For a large specification machine MS (i.e., a machine that has large numbers of states, outputs
and specified transitions) and a non trivial test suite TS that covers most or all of the transitions,
it can be observed from (3-5) that K1(MS) >> K2(MS) and K1(MS) >> K3(MS, TS) and therefore
FCe(MS, TS) 1. For example, we have found with formula (3-5) that the estimated fault
coverage for the two test suites TST and TSUIO of the NBS Transport Protocol shown in Figure 4
to be 100%. However, it is well known in the literature that a test suite generated with the UIO
method will in general provide better fault coverage than a test suite generated with the transition
tour method. It is therefore necessary to provide some kind of mechanism which can make a
distinction between the two. Actually, the following formula, which we call "Order Coverage",
can be used for this purpose:

FCo(MS, TS) =
Log 10(K1(MS)) - Log 10(max(K2(MS, TS), K3(MS, TS)))

Log 10(K1(MS)) - Log 10(K2(MS, TS))
 (3-6)

The intuition behind this formula is as follows. For a large specification machine and a non
trivial test suite such that K1(MS) >> K2(MS) and K1(MS) >> K3(MS, TS), K2(MS) and K3(MS,
TS) can be neglected in the calculation with formula (3-5). However, the orders (i.e., the
logarithms) of K2(MS) and K3(MS, TS) are still comparable with that of the K1(MS) and
therefore will not be neglected in the calculation with formula (3-6). For instance, although
FCe(MS, TST) = FCe(MS, TSUIO) = 100%, we can still see a difference between the two test
suites since FCo(MS, TST) = 63.82301% and FCo(MS, TST) = 66.05067%.

The following theorem summarizes the properties of the "order coverage".

Theorem 4.1
(1) 0 ≤ FCo(MS, TS) ≤ 1;
(2) FCo(MS, TS) = 1 if FCe(MS, TS) = 1;
(3) FCo(MS, TS) = 0 if FCe(MS, TS) = 0; and
(4) FCo(MS, TS) ≤ FCo(MS, TS’) if FCe(MS, TS) ≤ FCe(MS, TS’) .

5 Conclusions

In this paper, we have presented a structural analysis approach to the evaluation of fault
coverage of a test suite in respect to a system specification given in the form of a finite state
machine. This approach differs from those methods proposed in [DaSa 88, SiLe 89, DDB 91 and
MCS 93] as it avoids the necessity of generating and executing a (large) number of mutant
machines. Instead, it evaluates the fault coverage of a given test suite by directly analyzing the
test suite against the specification machine. It provides a numeric measure for a test suite no
matter whether the test suite has full fault coverage (i.e., 100%) or not. This feature makes the
metric approach different from one of our previous work [YPB 94] where a test suite is analyzed
only to see if it provides full fault coverage or not. As we have seen in Section 3, applications of

 19

our approach to a number of examples have shown that the estimated fault coverage of a test
suite is quite close to the precise fault coverage, especially when the test suite approaches full
fault coverage (100%). Furthermore, this approach has very low computational complexity.
Actually, it is not difficult to prove that its complexity is O(L2), where L is the size of a test suite
in terms of the total number of inputs in the test suite. We also proposed the "Order Coverage"
based on the structural analysis approach for large complex specification machines. Other
related work can be found in [MiPa 92, LoSh 92] where they aimed at generating test suites to
achieve full fault coverage (or maximal fault coverage as they called) rather than the evaluation
of fault coverage of a given test suite.

We also note that the structural analysis approach has been developed under certain assumptions
(Assumptions 1-4 as introduced in Section 2) which are the most relaxed ones compared with
other work based on the FSM model [SiLe 89, DaSa 88 etc.]. In particular, we have not assumed
the specification machine to be completely specified. Therefore, our approach can be applied to
partially specification machines. We believe that this is very important for its practical
applications since the real-world systems, such as protocol machines, are normally partially
specified.

References

[Chow 78] T.S. Chow, “Test Design Modeled by Finite-State Machines”, IEEE Trans. SE-4, 3,
 1978, pp. 178-187.
[DaSa 88] A. Dahbura and K. Sabnani, “Experience in Estimating Fault Coverage of a
Protocol Test”, in Proc. IEEE INFOCOM’88, 1988, pp. 71-79.
[DDB 91] M. Dubuc, R. Dssouli and G.V. Bochmann, “TESTL: A Tool for Incremental Test
 Suite Design Based on Finite State Model”, 4th International Workshop on Protocol
 Test Systems, Holland, November 1991.
[Gill 62] A. Gill, “Introduction to the Theory of Finite-State Machines” McGraw-Hill Book
 Company Inc., 1962, pp. 207.
[Koha 78] Z. Kohavi, “Switching and Finite Automata Theory”, New York, McGraw-Hill,
 1978, pp. 658.
[LoSh 92] F. Lombardi and Y.N. Shen, "Evaluation and Improvement of Fault Coverage of
 Conformance Testing by UIO Sequences", IEEE Trans. Commun., Vol. COM-40,
 8, August, 1992, pp. 1288-1293.
[MCS 93] H. Motteler, A. Chung and D. Sidhu, "Fault Coverage of UIO-based Methods for
 Protocol Testing", Proc. IWPTS, Pau, France, 28-30 September, 1993, pp. 21-33.
[MiPa 92] R.E. Miller and S. Paul, "Structural Analysis of a Protocol Specification and
 Generation of a Maximal Fault Coverage Conformance Test Sequence", submitted
for publication.
[Moor 56] E.F. Moore, “Gedanken-Experiments on Sequential Machines”, Automata Studies,
 Princeton University Press, Princeton, New Jersey, 1956.
[PBD 93] A. Petrenko, G.v. Bochmann and R. Dssouli, "Conformance Relations and Test
 Derivation", Proc. IWPTS, Pau, France, 28-30 September, 1993, pp. 157-178.
[Petr 91] A. Petrenko, “Checking Experiments with Protocol Machines”, Proc. of the 4th Int.
 Workshop on Protocol Test Systems, 1991.
[SiLe 89] D.P. Sidhu and T.K. Leung, “Formal Methods for Protocol Testing: A Detailed
 Study”, IEEE Trans. SE-15, 4, April 1989, pp. 413-425.

 20

[Ural 91] H. Ural, “Formal Methods for Test Sequence Generation”, Computer
 Communications, Vol. 15, No. 5, June 1992, pp. 311-325.
[YPB 93a] M. Yao, A. Petrenko and G.v. Bochmann, "Conformance Testing of Protocol
 Machines without Reset", Department Publication #861, Département
d'informatique et de recherche opérationnelle, Université de Montréal, February
1993, 27 p.
[YPB 93b] M. Yao, A. Petrenko and G.v. Bochmann, "Conformance Testing of Protocol
 Machines without Reset", Proc. of the 13th IFIP Symposium on Protocol
 Specification, Testing and Verification, Liege, Belgium, May 25-28, 1993, pp. 241-
 253.
[YPB 94] M. Yao, A. Petrenko and G.v. Bochmann, “Fault Coverage Analysis in Respect to
 an FSM Specification”, Accepted by IEEE INFOCOM’94 to be held in Toronto,
 Canada, June 12-16, 1994.

